
F u l l S p e c t r u m S o f t w a r e

Stop the Endless Alpha Blues

Everyone in the business of building com-
mercial software has either been there or seen
this happen.

Here are some practical, hands-on techniques
that you can use right now to turn things
around and start making forward progress.
Full Spectrum Software has performed many
software rescue missions over the last 12 years.
In this paper, we’ll share the techniques,
tools and processes that have led to our
100% success rate in rescuing hopelessly
stalled software projects and getting those
products to market.

A large part of any software rescue mission is
called product hardening and the code we
receive from a client is in a state that we call
“fragile.” Generally, the software being worked
on is either an older product that the team is
trying to upgrade and add new features and
capabilities to or the software is more complex
than the software team is prepared to manage.

For older products, at one time the software
may have had a great architecture, but over
the years many different engineers have
worked on the product and have not adhered
to that architecture. In some cases the soft-
ware is based on technology from the 1990’s,
perhaps MS-DOS which has been “wrappered”
to give it a Windows look and feel but they
are not truly Windows applications.

For newer products, the product may have
expanded in scope to require complex

threading, may require expertise that the
development team simply doesn’t posses or,
in the worst case, the product may have been
designed and implemented by engineers who
did not understand the technology.

Whatever the case may be, there are com-
mercial software tools available including
both static analysis and run time analysis
that can help immediately. However, the
most important change that needs to be
implemented immediately is a fundamental
shift in mindset. The goal at this stage is to
stop the test and de-bug cycle and begin a
controlled process called code hardening.

The goals, objectives, processes and
methodologies for product hardening are
different from simply trying to de-bug the
software and release it. It is a major shift in
strategy and almost always requires executive
buy-in. Needless to say, executing this
internally and selling this internally is a very,
very tough sell.

w w w . f u l l s p e c t r u m s o f t w a r e . c o m

Y ou are in charge of a software project that is already hopelessly stalled and which is many months, or

even years behind schedule. You’re in a seemingly endless cycle of test and de-bug mode and the soft

ware is still not stable enough to even consider releasing it. The team is stressed out, management is put-

ting pressure on you and sales people are explaining to customers why the product is delayed.

How to rescue a hopelessly stalled software project

More Pressure Doesn’t Help



It is particularly challenging because executives
don’t want to hear that you are essentially
stopping all development and shifting to a
completely different effort to analyze, stabilize and
ultimately prioritize how development will
proceed. However, the truth is, you really are
stopping development to redirect your resources.

The first step is to pull everyone off the project
except for the software lead and the SQA lead. You
will need their domain expertise and intimate
knowledge of the code. Next you need to acquire
the commercial grade static analysis tools and one
or more run time analysis tools. Both of these
toolsets are very challenging to configure correctly
so a reasonably large amount of time should be
allocated for configuration. This is especially true if
your team is not already using the tools.

Once the tools are configured correctly and applied
to your product, you will see an immediate picture
of the state of the code. The static analysis tools
will give you insight into the quality of craftsman-
ship of the code. For example, they will show you
exactly where engineers have failed to initialize
variables properly or failed to implement memory-
freeing techniques and calls properly or have
incomplete states that can result in unpredictable
behavior.

The run time analysis tools compliment
the static analysis tools and will track and report
problems such as unhandled exceptions or failures
in the code, out of bounds parameters that are
being passed to functions within the code and
report memory errors such as freeing the same
block of memory twice.

These types of defects are exceptionally difficult to
find without the use of these automated tools and
are the source of many types of very serious
problem conditions that are often hard to
reproduce.

Concurrently, you need to bring in your most experi-
enced software systems architect and a team of your
most experienced software quality assurance engi-
neers. The systems architect should have experience
in doing formal code reviews and should be tasked
with conducting a thorough analysis of the code.

Their focus should be on evaluating the architec-
ture, craftsmanship of the code and areas of the
code where there are known defects and problems.
Their report should identify where the major
problems exist within the code base. This allows
the software team leader to help prioritize where
resources should be allocated when they begin
fixing defects.

The new SQA team should be tasked with
developing formal test plans based on the result of
the code review and output from the automated
tools. It’s important to emphasize that the new
SQA team must be composed of the most highly
experienced people in the company. Highly
experienced software quality assurance engineers
have a mindset and the professional training to
test and design test protocols so that those defects
can then be entered into a commercial grade defect
tracking system. (It goes without saying that if
you’re not already doing so, you must implement a
commercial source code management system).

Recently the FDA forensics lab announced
that they were using static analysis tools to
test software that had been re-called due to
adverse events. Brian Fitzgerald of the
FDA forensics lab said “We’re hoping that
by medical device manufacturers staying
on top of their technology, that we can
introduce this up-to-date vision that we
have.” The implication is clear. Automated
test tools must become part of the software
development and SQA process.



The SQA team’s ability to test other people’s code
and uncover difficult to find and clearly document
difficult to reproduce defects is crucial in this
product hardening process. This is an absolute
necessity and is not the same as software engineers
testing their own code. Do not under any
circumstances allow the software developers to test
and approve their own code. Experienced SQA
engineers have an entirely different mindset about
testing other people’s code. While software
developers look for elegant ways to make thing
work, SQA engineers have a profound fascination
with looking for ways to make things break. Only
they should be allowed to approve code.

Once the systems architect has finished his or her
report, the static and runtime analysis tools have
been correctly configured and the tests have been
conducted, the software quality assurance team has
completed their detailed test plans and test
protocols and completed at least one round of
testing, you’re ready to begin developing your plan
for project completion. You should expect that if
you execute this process internally that this phase
will take approximately 8 to 12 weeks to complete.

There are two issues you should be prepared for
and set the correct expectations internally. One is
that when you complete this process, the bug
count will skyrocket. If the bug count does not
jump substantially, it is a sign that something has
been done incorrectly. Either the test tools have
not been configured correctly or the new teams
don’t have the maturity or experience to execute
the process described here.

The key point is that you need to set the
expectation that the results of doing this analysis
will reveal many more bugs than were originally
thought to exist. If you don’t set this expectation
before you begin the product hardening process
you may have some very upset executives.

The second issue is that you will have a fairly good
sense of the “life expectancy” of the product. You
may make the informed judgment that no further
upgrades will be possible for the product and that
management should expect that a complete re-
design and re-write will be required within a
certain time frame.

At this point, you are ready to bring the original
development team back onto the project. However,
the new SQA team should largely be kept in place
until product release. At minimum, you should
keep your most experienced SQA lead and your
software architect on the project until completion.

You now have a detailed view of the code base and
you can prioritize the order in which each defect
should be addressed. Start with the low hanging
fruit. Fix the easy bugs first so that additional
defects are not introduced during the fix process.
Address each bug methodically and release the fix
to the SQA team for formal testing.

Do not begin bug fixing at a frenzied pace, even
though you will be under pressure to do so. Wait
until the SQA team completes its testing and
review the results of each fix. From this point to
final release it is imperative that no additional bugs
are generated as a result of a fix. Follow the now
documented test procedures and protocols. Review
your secure defect tracking system daily. Continue
to run both the static and runtime analysis tools
periodically. Talk to each team member at least
once per day regarding their progress and any
problems. Plan to hold formal weekly review
meetings to be absolutely certain you are making
forward progress.

If you follow this highly structured process
consistently, you now have a very good chance at
successfully releasing the product on the revised
schedule.



Techniques that don’t work

Having just described a process that will work, we’ll
take a moment to discuss techniques that do not
work. There’s always a temptation to throw more
resources at a project in the futile hope that more
cooks won’t spoil the soup. Many companies try to
accelerate product completion by adding more
software engineers. The practical problem with this
approach is that a software team leader has certain
bandwidth in terms of how many people he or she
can manage and still make valuable contributions
to the project.

The software team leader is usually intimately
familiar with the code. The leader is usually the
most productive member of the team. Give them
too many new engineers to manage and bring up
to speed and their personal productivity drops
precipitously, slowing progress as a result.

Simply adding more software engineers will
achieve the opposite of the desired outcome. It just
slows everything down. This is especially true
when adding more junior engineers who have not
been through multiple product releases.

The second technique that also doesn’t work is to
add many more SQA engineers and software
testers. This sometimes creates the illusion that the
bug count is going down and forward progress is
suddenly being achieved. In fact, the opposite is
happening.

The new SQA engineers and the often very
inexperienced software testers are simply not
familiar with the code. The bug count may actually
be increasing, but in fact, duplicate defects are
reported or defects are reported without proper
steps to reproduce. In the worst case, they don’t
have the experience or familiarity with the code to
find new or meaningful bugs. This can be a very
dangerous situation if management makes a
decision to release the product based on a low
bug count.

The last technique is the worst one of all. Put even
more pressure on the team to finish. Anyone who
has been in this situation knows that there is a
physical limit to the number of hours an engineer
can work over a sustained period of time before the
quality of their work begins to deteriorate. Highly
experienced engineers start to make rookie
mistakes because they are mentally and physically
exhausted. Even though management has been
kind enough to install cots so people can sleep an
hour or two a night, this technique also achieves
the opposite of the desired outcome.

About Full Spectrum Software

Full Spectrum Software has performed a wide
variety of software rescue missions over the past
12 years with a 100% success rate. The company
employs hundreds of pre-configured templates and
test procedures that are used in conjunction with
dozens of our commercial grade static and runtime
analysis tools. This allows us to quickly customize
the correct configuration of our static and runtime
analysis tools to meet the needs of virtually any
type of code base. Our SQA teams have an
extensive library of processes and protocols that
can be quickly customized to our client’s needs.
Our software architects are experts in product
hardening and incorporate a full arsenal of
automated systems in our development and testing
services. We leverage the expertise of your internal
teams to rapidly achieve results for our clients. If
you have a hopelessly stalled software project and
need an expert partner to help you get to
completion, give us a call. We’ll introduce you to
our clients who worked with us to get a high
quality product out the door.

Full Spectrum Software
225 Turnpike Road
Southborough, MA 01772
508-620-6400
www.FullSpectrumSoftware.com


