
 F u l l S p e c t r u m S o f t w a r e

w w w . F u l l S p e c t r u m S o f t w a r e . c o m

Copyright © 2011 Full Spectrum Software, Inc.

 A Common Problem in Using Rich Internet Application Services

by Andrew Dallas, CTO, Full Spectrum Software

Overview

This highly technical article describes how to resolve the issue of data not being

committed to a back-end database when using the intuitive approach of using data

bound controls in a Rich Internet Application in either Windows Presentation

Foundation (WPF) or Silverlight. We’ve found the online resources a bit misleading or

unclear and we think many engineers will find that when using RIA Services in a WPF or

Silverlight application, the Visual Studio Wizards can generate code that will not always

work as expected.

The Usual Approach

The standard practice in using RIA Services is to first create an ADO.NET Entity Data

Model to model the back end data store. The next step is to create a Domain Service Class

and configure it to use whatever resources are needed from the Entity Data Model to

support that service. For instance, in a medical application you may be creating a

Domain Service for managing patient information. You might first create a

“PatientService” Domain Service Class and select the relevant patient related tables,

views and stored procedures. If you want to support editing the data in the database, you

would make sure to check the Enable Editing checkbox in the wizard to generate the

required methods. This creates a Domain Context class named “PatientContext” for your

use in the code.

So far, so good. All of this works as intended to provide easy access to data in the back

end database. The next step is to provide a view for this data in your user interface (UI).

As an example, you might choose a DataGrid to display the data from a table in the

database. A relatively easy approach is to drag the appropriate resource from the Data

Sources window in Visual Studio to your design surface. Dragging a table resource will,

by default, create a DataGrid in your UI page or window. If you examine the generated

XAML code, you will see a DomainDataSource object declared just above the new

DataGrid. This DomainDataSource represents your PatientContext object and the

DataGrid’s ItemSource is bound to this object.

Then You Test It

If you build and run your project you will see a table displayed with all the data from the

associated table in your database. All is good or so it seems. Let’s say you now want to

allow the user to edit the data contained in the table. The DataGrid allows in-cell editing

by default unless of course you set the IsReadOnly property to true. You select a cell in

the table and click again to enter edit mode. You change the data and tab to another cell

F u l l S p e c t r u m S o f t w a r e

w w w . F u l l S p e c t r u m S o f t w a r e . c o m

Copyright © 2011 Full Spectrum Software, Inc.

or press Enter to commit the data. The data is in fact changed on the screen. However, if

you reload or restart the application, you will notice the old data is displayed. The

update was never sent to the database.

It appears that two-way binding is not working correctly when the DomainDataSource is

used to connect your Domain Context to the DataGrid. This presents a challenging

debugging situation unless you know the secret.

The Solution

Applying the Model View View-Model (MVVM) design pattern provides a way to

correct the problem.

 You can instantiate your Domain Context object in code in your ViewModel object

instead of declaring it in XAML. You then provide an IEnumerable<EntityClass>

property in the ViewModel that represents the collection of EntityClass objects in the

database table. The EntityClass in this case would be the specific class that was generated

by the Domain Service Class for the specified table such as “Patient”.

After instantiating the Domain Context, you set the IEnumerable property to the

appropriate Entity Set property of the Domain Context. Finally, you declare the

ViewModel object in the XAML instead of the DomainDataSource object and you bind

the DataGrid’s ItemSource property to the IEnumerable property of the ViewModel.

After building and running this code, you should now find that updated data in the UI is

now persisted in the database.

Hopefully this highly technical article will save many people scads of time debugging

and searching for solutions. Contact us if you have a better solution!

 About Full Spectrum Software

Full Spectrum Software is an ISO 13485 certified, 15 year old consulting firm

specializing in the development of embedded and applications software for the

medical, life sciences and scientific industries. The company has delivered over 100

commercial products to market.

About the Author

Andrew Dallas, the firm’s CTO, is widely considered one of the leading authorities on

best practices in FDA and ISO 13485 controlled software projects Andrew serves on the

Editorial Advisory Board of Medical Device and Diagnostic Industry magazine and he

has published extensively in major trade and peer reviewed technical publications.

Contact Cindy Larkin, ClientServices@FullSpectrumSoftware.com

(508) 620-6400 • 225 Turnpike Road • Southborough, MA 01772 •

www.FullSpectrumSoftware.com

mailto:ClientServices@FullSpectrumSoftware.com
http://www.fullspectrumsoftware.com/

